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Finding analytically the statistics of the longest common subsequence �LCS� of a pair of random sequences
drawn from c alphabets is a challenging problem in computational evolutionary biology. We present exact
asymptotic results for the distribution of the LCS in a simpler, yet nontrivial, variant of the original model
called the Bernoulli matching �BM� model. We show that in the BM model, for all c, the distribution of the
asymptotic length of the LCS, suitably scaled, is identical to the Tracy-Widom distribution of the largest
eigenvalue of a random matrix whose entries are drawn from a Gaussian unitary ensemble.
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Sequence alignment is one of the most useful quantitative
methods used in evolutionary molecular biology �1–3�. The
goal of an alignment algorithm is to search for similarities in
patterns in different sequences. A classic and much studied
alignment problem is the so-called “longest common subse-
quence” �LCS� problem. The input to this problem is a
pair of sequences �= ��1 ,�2 ,… ,�i� �of length i� and
�= ��1 ,�2 ,… ,� j� �of length j�. For example, � and � can be
two random sequences of the four base pairs A ,C ,G ,T
of a DNA molecule, e.g., �= �A ,C ,G ,C ,T ,A ,C� and
�= �C ,T ,G ,A ,C�. A subsequence of � is an ordered sublist
of � �entries of which need not be consecutive in ��, e.g,
�C ,G ,T ,C�, but not �T ,G ,C�. A common subsequence of
two sequences � and � is a subsequence of both of them. For
example, the subsequence �C ,G ,A ,C� is a common subse-
quence of both � and �. There can be many possible com-
mon subsequences of a pair of sequences. The aim of the
LCS problem is to find the longest of such common subse-
quences. This problem and its variants have been widely
studied in biology �4–7�, computer science �8–10,2�, prob-
ability theory �11–16�, and more recently in statistical phys-
ics �17–19�. A particularly important application of the LCS
problem is to quantify the closeness between two DNA se-
quences. In evolutionary biology, the genes responsible for
building specific proteins evolve with time and by finding the
LCS of the same gene in different species, one can learn
what has been conserved in time. Also, when a new DNA
molecule is sequenced in vitro, it is important to know
whether it is really new or if it already exists. This is
achieved quantitatively by measuring the LCS of the new
molecule with another existing already in the database.

For a pair of fixed sequences of length i and j respec-
tively, the length Li,j of their LCS is just a number. However,
in the stochastic version of the LCS problem one compares
two random sequences drawn from c alphabets and hence the
length Li,j is a random variable. A major challenge over the
last three decades has been to determine the statistics of Li,j
�11–15�. For equally long sequences �i= j=n�, it has been
proved that �Ln,n�	�cn for n�1, where the averaging is
performed over all realizations of the random sequences. The
constant �c is known as the Chvátal-Sankoff constant. There

exist several bounds �12,14,15�, a conjecture due to Steele
�13� that �c=2/ �1+
c� and a recent proof �16� that
�c→2/
c as c→�. Unfortunately, no exact results are avail-
able for the finite-size corrections to the leading behavior of
the average �Ln,n�, for the variance, and also for the full
probability distribution of Ln,n. Therefore it is important to
find other variants of this LCS problem that may be analyti-
cally tractable for the full distribution of the matching length.

Computationally, the easiest way to determine the length
Li,j of the LCS of two arbitrary sequences of lengths i and j
�in polynomial time �O�ij�� is via using the recursive algo-
rithm �2,19�

Lij = max�Li−1,j,Li,j−1,Li−1,j−1 + �i,j� , �1�

subject to the initial conditions Li,0=L0,j =L0,0=0. The vari-
able �i,j is either 1 when the characters at the positions i �in
the sequence �� and j �in the sequence �� match each other,
or 0 if they do not. Note that the variables �i,j’s are not
independent of each other. To see this consider the simple
example of the matching of two strings �=AB and �=AA.
One has by definition: �1,1=�1,2=1 and �2,1=0. The knowl-
edge of these three variables is sufficient to predict that the
last two letters will not match, i.e., �2,2=0. Thus, �2,2 cannot
take its value independently of �1,1 , �1,2 , �2,1. These re-
sidual correlations between the �i,j variables make the LCS
problem rather complicated. Note, however, that for two ran-
dom sequences drawn from c alphabets, these correlations
between the �i,j variables vanish in the c→� limit.

A natural question is how important are these correlations
between the �i,j variables, e.g., do they affect the asymptotic
statistics of Li,j’s for large i and j? Is the problem solvable if
one ignores these correlations? These questions naturally
lead to the Bernoulli matching �BM� model, which is a sim-
pler variant of the original LCS problem where one ignores
the correlations between �i,j’s for all c �19�. The length Li,j

BM

of the BM model satisfies the same recursion relation in Eq.
�1� except that �i,j’s are now independent and each drawn
from the bimodal distribution: p���= �1/c�	�,1+ �1
−1/c�	�,0. This approximation is expected to be exact only
in the appropriately taken c→� limit. Nevertheless, for fi-
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nite c, the results on the BM model can serve as a useful
benchmark for the original LCS model to decide if indeed
the correlations between �i,j’s are important or not. Unfortu-
nately, even in the absence of correlations, the exact aymp-
totic distribution of Li,j

BM in the BM model has so far re-
mained elusive, mainly due to the nonlinear nature of the
recursion relation in Eq. �1�. The purpose of this Rapid Com-
munication is to present an exact asymptotic formula for the
distribution of the length Ln,n

BM in the BM model for all c.
So far, only the leading asymptotic behavior of the aver-

age length in the BM model is known �19� using the “cavity”
method of spin-glass physics �20�,

�Ln,n
BM� 	 �c

BMn , �2�

where �c
BM =2/ �1+
c�, same as the conjectured value of the

Chvátal-Sankoff constant �c for the original LCS model.
However, other properties such as the variance or the distri-
bution of Ln,n

BM remained intractable even in the BM model.
Our main result is that for large n,

Ln,n
BM → �c

BMn + f�c�n1/3
 , �3�

where 
 is a random variable with an n-independent distri-
bution, Prob�
�x�=FTW�x�, which is the well-studied
Tracy-Widom distribution for the largest eigenvalue of a ran-
dom matrix with entries drawn from a Gaussian unitary en-
semble �21�. For a detailed form of the function FTW�x�, see
�21�. We show that for all c,

f�c� =
c1/6�
c − 1�1/3


c + 1
. �4�

This allows us to calculate the average including the sublead-
ing finite-size correction term and the variance of Ln,n

BM for
large n,

�Ln,n
BM� 	 �c

BMn + �
�f�c�n1/3,

Var Ln,n
BM 	 ��
2� − �
�2�f2�c�n2/3, �5�

where one can use the known exact values �21�,
�
�=−1.7711… and �
2�− �
�2=0.8132… . These exact re-
sults thus invalidate the previous attempt �19� to fit the sub-
leading correction to the mean in the BM model with a
n1/2 / ln�n� behavior and also to fit the scaled distribution with
a Gaussian form. Note that the recursion relation in Eq. �1�
can also be viewed as a �1+1�-dimensional directed polymer
problem �18,19� and some asymptotic results �such as the
O�n2/3� behavior of the variance of Ln,n for large n� can be
obtained using the arguments of universality �18�. However,
this does not provide precise results for the full distribution
that are obtained here.

It is useful to provide a synopsis of our method in deriv-
ing these results. First, we prove the results in the c→�
limit, by using mappings to other models. To make progress
for finite c, we first map the BM model exactly to a three-
dimensional �3D� anisotropic directed percolation �ADP�
model studied by Rajesh and Dhar �22�. This ADP model can
further be mapped to a �1+1�-dimensional directed polymer
problem studied by Johansson �23�. For this specific directed

polymer problem, Johansson derived exact asymptotic re-
sults for the distribution of the polymer energy. To extract the
results for the BM model from those of Johansson’s model,
we use a simple symmetry argument which then allows us to
derive our main results in Eqs. �3�–�5� for all c. As a check,
we recover the c→� limit result obtained independently by
the first method.

In the BM model, the length Li,j
BM can be interpreted as the

height of a surface over the two-dimensional �2D� �i , j� plane
constructed via the recursion relation in Eq. �1�. A typical
surface, shown in Fig. 1�a�, has terracelike structures.

It is useful to consider the projection of the level lines
separating the adjacent terraces whose heights differ by 1
�see Fig. 2� onto the 2D �i , j� plane. Note that, by the rule Eq.
�1�, these level lines never overlap each other, i.e., no two
paths have any common edge. The statistical weight of such
a projected 2D configuration is the product of weights asso-
ciated with the vertices of the 2D plane. There are five types
of possible vertices with nonzero weights as shown in Fig. 2,
where p=1/c and q=1− p. Since the level lines never cross
each other, the weight of the first vertex in Fig. 2 is 0.

Consider first the limit c→� �i.e., p→0�. The weights of
all allowed vertices are 1, except the ones shown by black
dots in Fig. 2, whose associated weights are p→0. The num-
ber N of these black dots inside a rectangle of area A= ij can
be easily estimated. For large A and p→0, this number is

FIG. 1. Examples of �a� the BM surface Li,j
BM � h̃�x ,y� and �b�

the ADP surface Li,j
ADP�h�x ,y�.

FIG. 2. Projected 2D level lines separating adjacent terraces of
unit height difference in the BM surface in Fig. 1�a�. The adjacent
table shows the weights of all vertices on the 2D plane.
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Poisson distributed with the mean N̄= pA �see, e.g., remark 3
in Section 4 of �24��. The Bethe ansatz analysis shows that
BM corresponds to the sector of the five-vertex model �25�
where the density � of empty edges in a row of vertical
edges is close to the boundary �	1−. The careful examina-
tion of the free energy near this boundary allows one to

conclude that the leading contribution in p �for p→0� to N̄
comes exactly from the line of phase transitions in a five-

vertex model. The subleading corrections to N̄ are of order
�p3/2 and are ensured by small deviations from the critical
line being beyond the Poisson approximation �26�.

The height Li,j
BM is just the number of level lines N inside

this rectangle of area A= ij. The problem of estimating N has
recently appeared in a number of interface models such as a
polynuclear growth model �27� and a ballistic deposition
model �28�. By using a mapping to the longest increasing
subsequence �LIS� of the equally likely permutations of a set
of integers and then, by applying a celebrated result due to
Baik, Deift, and Johansson �BDJ� �30�, it was shown �27,28�
that the number of level lines N inside the rectangle �for
large A�, appropriately scaled, has a limiting behavior,

N→2
N̄+ N̄1/6
, where 
 is a random variable with Tracy-

Widom distribution. Using N̄= pA= ij /c, one then obtains in
the limit p→0,

Li,j
BM = N →

2

c


ij + 
 ij

c
�1/6


 . �6�

In particular, for large equal length sequences i= j=n, we get
for c→�

Ln,n
BM →

2

c

n + c−1/6n1/3
 . �7�

For finite c, while the above mapping to the LIS problem still
works, the corresponding permutations of the LIS problem
are not generated with equal probability and hence one can
no longer use the BDJ results.

For any finite c, we can map the BM model to the ADP
model �22�. In the ADP on a simple cubic lattice the bonds
are occupied with probabilities px, py, and pz along the x, y,
and z axes and are all directed towards increasing coordi-
nates. Imagine a source of fluid at the origin that spreads
along the occupied directed bonds. The sites that get wet by
the fluid form a 3D cluster. In the ADP problem, the bond
occupation probabilities are anisotropic, px= py =1 �all bonds
aligned along the x and y axes are occupied� and pz= p.
Hence, if the point �x ,y ,z� gets wet by the fluid then all the
points �x� ,y� ,z� on the same plane with x��x and y��y
also get wet. Such a wet cluster is compact and can be char-
acterized by its bounding surface height h�x ,y� as shown in
Fig. 1�b�. It is not difficult to see that the height h�x ,y�
satisfies the following recursion relation �22�,

h�x,y� = max�h�x − 1,y�,h�x,y − 1�� + 
x,y , �8�

where 
x,y’s are i.i.d. �independent and identically distrib-
uted� random variables taking non-negative integer values
with Prob�
x,y =k�= �1− p�pk for k=0,1,2,… . One can also
interpret the height h�x ,y� in Eq. �8� as the energy of a di-

rected polymer in the x-y plane. Precisely this particular ver-
sion of the polymer problem was studied by Johansson �23�,
who obtained the asymptotic distribution of the height for
large x and y,

h�x,y� →
2
pxy + p�x + y�

q
+

�pxy�1/6

q

���1 + p� +
 p

xy
�x + y��2/3


 , �9�

where q=1− p, and 
 is a random variable with a Tracy-
Widom distribution.

While the terrace-like structures of the ADP surface look
similar to the BM surfaces �compare Figs. 1�a� and 1�b��,
there is an important difference between the two. In the ADP
model, the level lines separating two adjacent terraces can
overlap with each other �22�, which does not happen in the
BM model. However, by making the following change of
coordinates in the ADP model �22�:

� = x + h�x,y�, � = y + h�x,y� , �10�

one gets a configuration of the surface where the level lines
no longer overlap. Moreover, it is not difficult to show that
the projected 2D configuration of level lines of this shifted
ADP surface has exactly the same statistical weight as the
projected 2D configuration of the BM surface. Denoting the

BM height by h̃�x ,y�=Lx,y
BM, one then has the identity,

h̃�� ,��=h�x ,y�, which holds for each configuration. Using
Eq. �10�, one can rewrite this identity as

h̃��,�� = h†� − h̃��,��,� − h̃��,��‡ . �11�

Thus, for any given height function h�x ,y� of the ADP
model, one can, in principle, obtain the corresponding height

function h̃�x ,y� for all �x ,y� of the BM model by solving the
nonlinear equation �11�. This is, however, very difficult in
practice. Fortunately, one can make progress for large �x ,y�
where one can replace the integer-valued discrete heights by

continuous functions h�x ,y� and h̃�x ,y�. Using the notation
�x�� /�x it is easy to derive from Eq. �10� the following pair
of identities,

�xh =
��h̃

1 − ��h̃ − ��h̃
, �yh =

��h̃

1 − ��h̃ − ��h̃
. �12�

In a similar way, one can show that

��h̃ =
�xh

1 + �xh + �yh
, ��h̃ =

�yh

1 + �xh + �yh
. �13�

We then observe that Eqs. �12� and �13� are invariant under
the simultaneous transformations

� → − x, � → − y, h̃ → h . �14�

Since the height is built up by integrating the derivatives, this
leads to a simple result for large � and �,
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h̃��,�� = h�− �,− �� . �15�

Thus, if we know exactly the functional form of the
ADP surface h�x ,y�, then the functional form of the BM

surface h̃�x ,y� for large x and y is simply obtained by

h̃�x ,y�=h�−x ,−y�. Changing x→−x and y→−y in Johans-
son’s expression for the ADP surface in Eq. �9�, we thus
arrive at our main asymptotic result for the BM model

Lx,y
BM = h̃�x,y� →

2
pxy − p�x + y�
q

+
�pxy�1/6

q
��1 + p� −
 p

xy
�x + y��2/3


 , �16�

where p=1/c and q=1−1/c. For equal length sequences
x=y=n, Eq. �16� then reduces to Eq. �3�.

To check the consistency of our asymptotic results, we
further computed the difference between the left- and the
right-hand sides of Eq. �11�,

�h��,�� = h̃��,�� − h†� − h̃��,��,� − h̃��,��‡ , �17�

with the functions h�x ,y� and h̃�x ,y� given respectively by
Eqs. �9� and �16�. For large �=� one gets

�h��,�� → �p1/3
2/3�1 − 
p�4/3��−1/3. �18�

Thus the discrepancy falls off as a power law for large �,
indicating that indeed our solution is asymptotically exact.
We have also performed numerical simulations of the BM
model using the recursion relation in Eq. �1� for c=2, 4, 9,
16, 100. Our preliminary results �26� for relatively small
system sizes �up to n=5000� are consistent with our exact
results in Eqs. �3�–�5�.

The Tracy-Widom distribution of the random matrix
theory has appeared recently in a number of problems
�21,23,27–29,31�. In this Rapid Communication we have
shown that it also describes the asymptotic distribution of the
length in the BM model for all c. Given that the correlations
in the original LCS model become negligible in the c→�
limit, it is likely that the BM asymptotics in Eq. �7� would
also hold for the original LCS model in the c→� limit �ob-
tained by first taking the n→� limit for fixed c and then
taking the c→� limit�, though it needs to be proved rigor-
ously. An important open problem is to determine whether
the Tracy-Widom distribution also appears in the LCS prob-
lem for finite c. The precise distribution obtained here �in-
cluding exact prefactors� for all c in the BM model will serve
as a useful benchmark to which future simulations of the
LCS problem can be compared.
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